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Abstract

In this paper we consider a problem of best approximation in�p, 1< p�∞. Let hp denote the
bestp-approximation ofh ∈ Rn from a closed, convex setK of Rn, 1< p < ∞, h /∈ K, and leth∗∞
be the strict uniform approximation ofh from K. We prove that ifK satisfies locally a geometrical
property, fulfilled by any polyhedral set ofRn, then lim supp→∞ p ‖hp − h∗∞‖ < ∞.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For x = (x(1), x(2), . . . , x(n)) ∈ Rn and 1�p�∞, the�p-norms are defined by

‖x‖p =

 n∑

j=1

|x(j)|p

1/p

, 1�p < ∞,

‖x‖ := ‖x‖∞ = max1� j �n |x(j)|, p = ∞.
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Let K 
= ∅ be a subset ofRn. For a fixed h∈ Rn \ K and 1�p�∞ we say thathp ∈ K

is a bestp-approximation ofh fromK if

‖hp − h‖p �‖f − h‖p for all f ∈ K.

Throughout this paper we will assume thatK is a closed, convex set ofRn. We also suppose
0 /∈ K andh = 0. This involves no loss of generality since all relevant properties are
translation invariant. In this context, the existence ofhp is a well-known result. Moreover,
for 1 < p < ∞, hp is unique and characterized by (see for instance[12])

n∑
j=1

(hp(j) − f (j))|hp(j)|p−1sgn(hp(j))�0 for all f ∈ K.

This condition can be written

〈hp − f, �p〉�0 for all f ∈ K, (1)

where〈·, ·〉 denotes the usual inner product inRn and�p ∈ Rn is given by�p(j) :=
|hp(j)|p−1 sgn(hp(j)), 1�j �n.

If p = ∞ we will also say thath∞ is a best uniform approximation of 0 fromK. A best
uniform approximation may not be unique.

It is also known[1,4,6] that ifK is an affine subspace, then

lim
p→∞ hp = h∗∞, (2)

whereh∗∞ is a particular best uniform approximation of 0 fromK, called thestrict uniform
approximation[6,10] and whose definition is also valid in any closed, convex setK. The
strict uniform approximation is determined by the next property. LetH denote the set of the
best uniform approximations of 0 fromK. For everyh∞ ∈ H we consider the vector�(h∞)

whose coordinates are given by|h∞(j)|, 1�j �n, arranged in decreasing order. Thenh∗∞
is the only element inH which has�(h∗∞) minimal in the lexicographic ordering.

In the literature the convergence (2) is called thePólya Algorithm[9]. In [3,8] it is proved
that ifK is an affine subspace then a stronger result holds, namely that

lim sup
p→∞

p ‖hp − h∗∞‖ < ∞. (3)

Moreover, in[8,10] it is deduced that there are constantsM1, M2 > 0 and 0�a�1,
depending onK, such that

M1 ap �p ‖hp − h∗∞‖�M2 ap for all p > 1.

The next example (see[2,6]) shows that ifK is not an affine subspace, thenhp does not
converge necessarily to the strict uniform approximation. On the other hand, in [4,6,7] we
can find a sufficient condition onK under which (2) holds. In particular, ifK is a poly-
hedral set, i.e., a finite intersection of closed half-spaces, thenK satisfies this condition.
Furthermore, in this case it is proved in [5] that (3) holds.
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Example 1. Let K ⊂ R3 be the convex hull of

{(x, y, z) : y = 1 + (x − 1)2, 0�x �1, z = 1} ∪ {0, 0, 0}.
In this case,h∗∞ = (1,1,0) and it is not difficult to prove that limp→∞ hp = (1,1,1).

Henceforth, without loss of generality, we will assume‖h∗∞‖ = 1. Let 1= d1 > d2 >

· · · > ds �0 denote all the different values of|h∗∞(j)|, 1�j �n, and let{Jr}s
r=1 be the

partition ofJ := {1,2, . . . , n} defined byJr = {j ∈ J : |h∗∞(j)| = dr}.
Note that ifh∞ is any best uniform approximation of 0 fromK, thenh∞(j) = h∗∞(j)

for all j ∈ J1; otherwise,(h∞ + h∗∞)/2 should be a best uniform approximation of 0 from
K that contradicts the definition of the strict uniform approximation. For allp > 1,

‖h∗∞‖�‖hp‖�‖hp‖p �‖h∗∞‖p �n1/p‖h∗∞‖.

So the set{‖hp‖}∞p=1 is bounded, and limp→∞ ‖hp‖ = ‖h∗∞‖. It follows that the limit as
p → ∞ of any convergent subsequence of{hp} is necessarily a best uniform approximation
of 0 fromK. Then observe that, in particular, (2) is valid wheneverh∗∞ is the unique best
uniform approximation of 0 fromK. In general, sinceh∞(j) = h∗∞(j) for all j ∈ J1, we
deduce that

lim
p→∞ hp(j) = h∗∞(j) for all j ∈ J1.

Also, it is easy to prove that the functionF : (1,+∞) → Rn, given byF (p) = hp, is
continuous.

The next example is especially interesting because it presents a situation wherehp does
not converge to any point asp → ∞.

Example 2. Consider the curvesC1, C2 in R3 given by

C1 = {(x, y, z) ∈ R3 : y = 1 + (x − 1)2, 0�x �1, z = 0},
C2 = {(x, y, z) ∈ R3 : y = 1 + (x − 1)2, 0�x �1, z = 1}.

For every integerk�2 takePk =
(
1 − 2

2k−1, 1 + 4
(2k−1)2

, 0
)

∈C1, Qk =
(
1 − 1

k
, 1 + 1

k2 , 1
)

∈ C2. LetTk be the convex hull of the pointsPk, Qk, Pk+1 and letT ′
k be the convex hull of the

pointsQk, Pk+1 andQk+1. Finally, letK denote the closed convex hull of
⋃

k �2 (Tk ∪T ′
k).

Observe that the segmentL := {(1,1, t) : 0� t �1} is in K. Moreover, sinceh(2)�1 for
all h ∈ K, it is easy to prove that the set of the best uniform approximations of 0 fromK is
preciselyL, and soh∗∞ = (1,1,0).

If we write hp = (xp, yp, zp), p > 1, then(xp, yp) → (1,1) asp → ∞. As (1,1,0) ∈
K, we have x

p
p + y

p
p + z

p
p �2 for all p > 1, and hencehp 
= (1,1, t), with 0 < t �1.

Applying (1) we see easily thathp 
= (1,1,0). Thus for allp > 1 we get x
p
p +y

p
p + z

p
p < 2

and it is deduced thatxp < 1, yp > 1 and 0�zp < 1.
We havexp

p → 0 andz
p
p → 0 asp → ∞. Indeed, otherwise we can take a subsequence

pk → ∞ such that(xpk
pk

, y
pk
pk

, z
pk
pk

) → (�, �, �) ask → ∞, with ��0, ��0 and�+ � > 0.
Observe that��1 sinceypk

> 1 for allk. Using a subsequence if necessary, we can suppose
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(xpk
, ypk

, zpk
) → (1,1, z0) ask → ∞, with a fixed z0 ∈ [0, 1]. Applying (1) we obtain

(xpk
− h(1))x

pk−1
pk

+ (ypk
− h(2))y

pk−1
pk

+ (zpk
− h(3))z

pk−1
pk

�0 for all h ∈ K,

and so, taking limits ask → ∞,

�(1 − h(1)) + �(1 − h(2)) + �(z0 − h(3))�0 for all h ∈ K. (4)

Note that� = 0 if 0�z0 < 1. Furthermore, ifz0 = 1 and� > 0, we get a contradiction
in (4) for h = (1,1,0). So� = 0 and (we are assuming)� > 0. Now, applying (4) with
h = Pk ∈ K, we get�− 2�

2k−1 �0 for every integerk�2. Hence��0, a contradiction. Thus
x

p
p → 0 asp → ∞. In particular, we have proved thatp (1 − xp) → +∞ asp → ∞.
Sincexp ↑ 1 as p→ ∞, the continuity of the mapp �→ xp implies that there exists

pk → ∞ ask → ∞ such thatxpk
= 1 − 1/k for all k large enough (thuspk/k → ∞

ask → ∞). Recall thatzpk
< 1 for everypk. Furthermore, it is easy to see thatzpk


= 0
wheneverxpk

= 1− 1/k. Thus fork large enoughhpk
∈ int(Tk), and sohpk

coincides with
the bestpk-approximation of 0 from the plane�k, determined by the pointsPk, Qk and
Pk+1, and whose equation is given by

8k3x + k2(4k2 − 1)y + z = 4k4 + 8k3 − 5k2.

Sincehpk
is the only point of contact of the surfacexp + yp + zp = x

pk
pk

+ y
pk
pk

+ z
pk
pk

with
the plane�k, for k sufficiently large there exists�k 
= 0 such that

(x
pk−1
pk

, y
pk−1
pk

, z
pk−1
pk

) = �k(8k3, k2(4k2 − 1),1).

Hence, in particular,zpk−1
pk

= x
pk−1
pk

/8k3, and sozpk
= xpk

/(8k3)1/(pk−1). Sincepk/k →
∞ and xpk

→ 1, ask → ∞, we obtain immediately limk→∞ zpk
= 1, and hence

limk→∞ hpk
= (1,1,1).

Similarly, there existsp′
k → ∞ ask → ∞ such thatxp′

k
= 1−2/(2k −1) for all k large

enough. For thesek it is immediate to prove thathp′
k

= Pk, and so limk→∞ hp′
k

= (1,1,0).
Consequently,hp does not converge asp → ∞. Furthermore, as the mapp �→ zp is
continuous forp ∈ (1,∞), for eachz0 ∈ [0, 1] there exists a subsequencep′′

k → ∞ such
that limk→∞ hpk

′′ = (1,1, z0).
The main purpose of this paper is to give a condition onK so that (3) holds. The following

example shows that, even in the case thathp → h∗∞, (3) may not be achieved.

Example 3. In R2, let K be the convex hull of the curveC = {(x, y) : y = 1 + (x −
1)2, 0�x �1}. An easy computation shows thath∗∞ = (1,1) is the unique best uniform
approximation of 0 fromK and thathp = (1 − �p, 1 + �2

p), with �p > 0 for all p > 1 and
�p → 0 asp → ∞. Since

(1 − �p)p + (1 + �2
p)p < 1p + 1p = 2,

we deduce that lim sup(1+ �2
p)p < ∞ asp → ∞. Furthermore, sincehp is the only point

of contact of the�p-ball with the curveC, we have

(1 − �p)p−1/(1 + �2
p)p−1 = 2�p.
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We conclude that limp→∞(1 − �p)p−1 = 0, and so limp→∞ e−�p(p−1) = 0, whence
p �p → ∞ asp → ∞.

2. The property A∞

For h ∈ K, we define
Vh(K) = {v ∈ Rn : ‖v‖ = 1 andh + � v ∈ K for some� > 0},

	h(v) = max{� : 0 < ��1, h + � v ∈ K} for eachv ∈ Vh(K),

andAh = Ah(K) = inf {	h(v) : v ∈ Vh(K)}.

Definition 2.1. We say thatK satisfies propertyA∞ if Ah∞ > 0 for every best uniform
approximationh∞ of 0 fromK.

If K is a closed half-space ofRn then it is easy to prove thatAh > 0 for eachh ∈ K.
Moreover, a standard argument shows that the property “Ah > 0 for every elementh in K”
is preserved under finite intersection of closed, convex sets. In particular, ifK is a polyhedral
set, thenAh > 0 for all h in K, and thereforeK satisfies propertyA∞.

Theorem 2.2. Let K be a nonempty,closed convex set ofRn, 0 /∈ K. Lethp denote the best
p-approximation of0 from K, 1< p < ∞, and leth∗∞ be the strict uniform approximation
of 0 from K. If K satisfies propertyA∞ thenlim supp ‖hp − h∗∞‖ < ∞ asp → ∞.

Proof. If the theorem is false, then there exists a sequencepk ↑ ∞ such thatpk‖hpk
−

h∗∞‖ → ∞ ask → ∞. Thus we will prove the theorem by showing that for any sequence
pk ↑ ∞, lim inf k→∞ pk‖hpk

− h∗∞‖ < ∞. So let pk ↑ ∞ ask → ∞. If hpk
= h∗∞ for

infinitely manyk, then the result follows. Hence, using a subsequence if necessary, we can
supposehpk


= h∗∞ for all k, and moreover limk→∞ uk = u, with ‖u‖ = 1, where

uk := hpk
− h∗∞

‖hpk
− h∗∞‖ .

We assert that there existsj0 ∈ J for whichu(j0) 
= 0 and

lim inf
k→∞ pk|hpk

(j0) − h∗∞(j0)| < ∞.

This assertion proves the theorem. Indeed,

lim inf
k→∞ pk ‖hpk

− h∗∞‖ = lim inf
k→∞

pk|hpk
(j0) − h∗∞(j0)|
|uk(j0)|

= 1

|u(j0)| lim inf
k→∞ pk|hpk

(j0) − h∗∞(j0)| < ∞.

Therefore our aim is now to prove that assertion.
In the following claim it is significant thatAh∗∞ > 0.

Claim. Bothh∗∞ + �uk andh∗∞ + �u are in K for every0���Ah∗∞ .
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Indeed, observe thath∗∞ +‖hpk
−h∗∞‖ uk = hpk

∈ K , with ‖hpk
−h∗∞‖ > 0,‖uk‖ = 1.

Hence,h∗∞ +Ah∗∞ uk ∈ K for anyk, and soh∗∞ +Ah∗∞ u ∈ K. AsK is convex, we conclude
thath∗∞ + � uk ∈ K andh∗∞ + � u ∈ K for every 0���Ah∗∞ . So the claim is proved.

By the definition ofhpk
we have

|hpk
(j0)|pk �

∑
j∈J

∣∣hpk
(j)

∣∣pk <
∑
j∈J

|h∗∞(j)|pk �n for all j0 ∈ J . (5)

We now consider two exhaustive cases:
(a) u(j0)h∗∞(j0) > 0 for somej0 ∈ J1.

In this case, for largek,
hpk

(j0) − h∗∞(j0)

h∗∞(j0)
> 0 and hence (recall that we are assuming

|h∗∞(j0)| = 1)

|hpk
(j0)|pk =

∣∣∣∣1 + hpk
(j0) − h∗∞(j0)

h∗∞(j0)

∣∣∣∣pk

=
(

1 + hpk
(j0) − h∗∞(j0)

h∗∞(j0)

)pk

� 1 + pk

hpk
(j0) − h∗∞(j0)

h∗∞(j0)
= 1 + pk|hpk

(j0) − h∗∞(j0)|.

By (5) we deduce that lim infk→∞ pk |hpk
(j0)−h∗∞(j0)| < ∞. Thus the theorem is proved

in this case.
(b) u(j)h∗∞(j)�0 for eachj ∈ J1.
In this case we now show that

u(j) = 0 for all j ∈ J1. (6)

Indeed, the claim asserts thath∗∞ + �u, with 0���Ah∗∞ , is in K; if u(j0)h∗∞(j0) < 0 for
somej0 ∈ J1 andu(j)h∗∞(j)�0 for eachj ∈ J1, thenh∗∞ + �u, with � > 0 and small
enough, is a best uniform approximation of 0 fromK that contradicts the definition of the
strict uniform approximation. So (6) holds and then we deduce thatĥ∞ := h∗∞ + �0 u is a
best uniform approximation of 0 fromK for some small�0 ∈ (0, Ah∗∞]. Thus,Aĥ∞ > 0.

Takingf = h∗∞ in (1) we obtain
〈
hpk

− h∗∞, �pk

〉
�0, and so

〈uk, �pk
〉�0 for all k.

We will prove that

〈u, �pk
〉�0 for k sufficiently large. (7)

Whenuk = u, (7) holds trivially. Assume nowuk 
= u. Defining

vk = (uk − u)/‖uk − u‖,

we have

ĥ∞ + �0‖uk − u‖ vk = h∗∞ + �0 u + �0‖uk − u‖vk = h∗∞ + �0uk.

Then from the claim,̂h∞ + �0‖uk − u‖ vk is in K. Sinceĥ∞ is a best uniform approxi-
mation of 0 fromK, it follows that ĥ∞ + 
 vk ∈ K, where
 := Aĥ∞ . Applying (1) with



R. Huotari et al. / Journal of Approximation Theory 135 (2005) 105–113 111

f = ĥ∞ + 
 vk, we get〈
hpk

− ĥ∞ − 
 vk, �pk

〉 = 〈hpk
− h∗∞ − �0 u − 
 vk, �pk

〉
=

(
‖hpk

− h∗∞‖ − 

‖uk − u‖

)
〈uk, �pk

〉

+
(



‖uk − u‖ − �0

)
〈u, �pk

〉�0.

Since〈uk, �pk
〉�0, {‖hpk

− h∗∞‖} is bounded and‖uk − u‖ → 0 ask → ∞, if in addition
k is sufficiently large we deduce that(

‖hpk
− h∗∞‖ − 


‖uk − u‖
)

〈uk, �pk
〉�0

and hence(



‖uk − u‖ − �0

)
〈u, �pk

〉�0.

So (7) holds. Accordingly, in what follows we will suppose thatk is sufficiently large so
that (7) is valid and also sgn(uk(j)) = sgn(u(j)) for all j ∈ J for whichu(j) 
= 0.

Note that due to (6) we haves �2. Letr0 := min{r ∈ {2, 3, . . . , s} : u(j) 
= 0 for somej
∈ Jr}. Observe thatdr0 > 0. Otherwise,r0 = s and then for everyj ∈ Js with u(j) 
= 0,
sgn(hpk

(j)) = sgn(u(j)). So u(j)sgn(hpk
(j)) > 0 and hence

〈u, �pk
〉 =

∑
j∈Js

u(j)|hpk
(j)|pk−1sgn(hpk

(j)) > 0,

which contradicts (7). Then

1

d
pk−1
r0

〈u, �pk
〉 =

∑
j∈J

u(j)

∣∣∣∣hpk
(j)

dr0

∣∣∣∣pk−1

sgn(hpk
(j))

=
s∑

r=r0

∑
j∈Jr

u(j)

∣∣∣∣hpk
(j)

dr0

∣∣∣∣pk−1

sgn(hpk
(j))�0, (8)

where the inequality is due to (7). Wheneveru(j) sgn(hpk
(j)) < 0 for somej ∈ Jr with

r �r0, we obtain sgn
(
hpk

(j) − h∗∞(j)
) 
= sgn(hpk

(j)), and so

∣∣∣∣hpk
(j)

h∗∞(j)

∣∣∣∣ =
∣∣∣∣hpk

(j)

dr

∣∣∣∣ < 1.

Sincedr �dr0 if r �r0, we also have∣∣∣∣hpk
(j)

dr0

∣∣∣∣ �
∣∣∣∣hpk

(j)

dr

∣∣∣∣ < 1.

Then (8) implies

lim inf
k→∞

∣∣∣∣hpk
(j)

dr0

∣∣∣∣ < ∞ for everyj ∈ Jr , r �r0. (9)

If u(j)h∗∞(j)�0 for allj ∈ Jr0, thenu(j1)h∗∞(j1) < 0 for somej1 ∈ Jr0. Thus, using the
claim, we deduce that for� > 0 and small enoughh∗∞+� u is a best uniform approximation
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of 0 fromK that in addition contradicts the definition of the strict uniform approximation.

Therefore there existsj0 ∈ Jr0 such thatu(j0)h∗∞(j0) > 0. Then
hpk

(j0) − h∗∞(j0)

h∗∞(j0)
> 0.

Using (9) we get

lim inf
k→∞

∣∣∣∣hpk
(j0)

dr0

∣∣∣∣pk−1

= lim inf
k→∞

(
1 + hpk

(j0) − h∗∞(j0)

h∗∞(j0)

)pk−1

< ∞.

Finally, applying the same procedure as in case (a), we obtain

lim inf
k→∞ pk |hpk

(j0) − h∗∞(j0)| < ∞. �

From Theorem2.2 the following result is immediately deduced.

Corollary 2.3. Let K be a nonempty closed,convex set ofRn, 0 /∈ K.Lethp denote the best
p-approximation of0 from K, 1< p < ∞, and leth∗∞ be the strict uniform approximation
of 0 from K. If K satisfies propertyA∞ thenlimp→∞ hp = h∗∞.

The following example shows that propertyA∞ is not necessary for (3) to hold.

Example 4. For� > 0 andx �1/2 we consider the function

f�(x) = 1 + exp
[
−(1

2 − x)−�
]

, f�

(
1
2

)
= 1,

which is convex fort��x � 1
2, wheret� := 1

2 −
(

�
�+1

)1/�
.

Let K� be the convex hull of the curve

C� =
{
(x, y) ∈ R2 : y = f�(x), t��x � 1

2

}
.

In this example,h∗∞ =
(

1
2, 1

)
is the only best uniform approximation of 0 fromK� and

hp =
(

1
2 − �p, 1 + εp

)
, whereεp = exp(−�−�

p ) and�p ↓ 0 asp → ∞. Using a similar

argument to that in Example3, we obtain(
1
2 − �p

)p−1

(1 + εp)p−1
= � �−�−1

p e−�−�
p .

We have lim
p→∞

(
1
2 − �p

) p−1
p

(1 + εp)
p−1

p

= 1/2. Suppose lim infp→∞ p ��
p = 0. Then it is easy to see

that

lim inf
p→∞ �1/p �(−�−1)/p

p e(−p ��
p)−1 = lim inf

p→∞
p(�+1)/(�p) �1/p

(p��
p)(�+1)/(�p) e(p��

p)−1 = 0,
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a contradiction. Suppose now lim sup
p→∞

p ��
p=∞. Then it is immediate to see that lim sup

p→∞
�1/p

�(−�−1)/p
p e(−p ��

p)−1 �1, a contradiction as well. We conclude that there are constants

M1, M2 > 0 such thatM1�p ��
p �M2, and sohp →

(
1
2, 1

)
asp → ∞ at a rate ex-

actly 1/p1/�.

Remark 1. Note that Theorem2.2 remains true if the conditionAh∞ > 0 is satisfied by
any best uniform approximationh∞ in an arbitrary small neighborhood ofh∗∞. On the
other hand, Example 1 shows that Theorem 2.2 is not true with the conditionAh∞ > 0 for
h∞ = h∗∞ only. Observe that in this example,Ah∗∞ = 1 but Ah∞ = 0 for each best uniform
approximationh∞ 
= h∗∞.

Remark 2. In Example2 we get the same approximation problem ifK is replaced by
the infinite intersection of closed half-spaces determined by the planes which contain the
trianglesTk, T ′

k , k�2, and the half-spacez�0. Thus (2), and hence (3) as well, is not true
generally ifK is the intersection of infinitely many closed half-spaces.
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