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Abstract

In this paper we consider a problem of best approximatiofy,inl < p <ooc. Let;, denote the
bestp-approximation ofi € R" from a closed, convex sét of R"”, 1< p <o, h ¢ K, and leth},
be the strict uniform approximation &ffrom K. We prove that ifK satisfies locally a geometrical
property, fulfilled by any polyhedral set &, then lim sup,_, o, p lhp — h5, |l <oo.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Forx = (x(1), x(2),...,x(n)) € R" and 1< p < oo, thef ,-norms are defined by
. 1/p
bl =D (1P| . 1<p <oo,
j=1
[x]l == llxllooc = MaXa<j<n lx()I, p = 00.
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LetK # ¢ be asubset dR”. For a fixed he R" \ K and 1< p < oo we say that, € K
is a besp-approximation oh from K if

hy = hll,<If —hl, forall feK.

Throughout this paper we will assume tkais a closed, convex set &’. We also suppose

0 ¢ K andh = 0. This involves no loss of generality since all relevant properties are
translation invariant. In this context, the existencé pfs a well-known result. Moreover,
for 1 < p < oo, h, is unique and characterized by (see for instgie§)

D () = FGNIR(DIPEsgn(y (/) <O forall f € K.

j=1
This condition can be written
(hy — f.¢,) <0 forall f € K, 1)

where(-, -) denotes the usual inner product®f and¢, € R" is given bye,(j) =
B p(DIP~E sy, (), 1< j <n.

If p = oo we will also say thati is a best uniform approximation of O froka A best
uniform approximation may not be unique.

It is also known[1,4,6] that ifK is an affine subspace, then

plinoohp = h},. (2)

whereh?  is a particular best uniform approximation of O frafncalled thestrict uniform
approximation6,10] and whose definition is also valid in any closed, convexXXsdthe
strict uniform approximation is determined by the next propertyH denote the set of the
best uniform approximations of O frok For everyk., € H we consider the vectai(i..)
whose coordinates are given [y ()|, 1< j <n, arranged in decreasing order. ThHgp
is the only element itd which hast(%} ) minimal in the lexicographic ordering.

In the literature the convergence (2) is called®déya Algorithm[9]. In [3,8] it is proved
that if K is an affine subspace then a stronger result holds, namely that

limsupp ||k, — h%, || < oo. (3)

p—>00

Moreover, in[8,10] it is deduced that there are constamfs, M> > 0 and 0<a <1,
depending orK, such that

Mya? <plh, —hi | <Mza? forallp> 1.

The next example (s€@,6]) shows that ifK is not an affine subspace, thép does not
converge necessarily to the strict uniform approximation. On the other hand, in [4,6,7] we
can find a sufficient condition oK under which (2) holds. In particular, K is a poly-
hedral set, i.e., a finite intersection of closed half-spaces, kheatisfies this condition.
Furthermore, in this case it is proved in [5] that (3) holds.
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Example 1. Let K c R be the convex hull of
{(x,y,2):y=14+((x—12 0<x<1, z=1}U{0,0,0}.
In this caseh}, = (1,1,0) and it is not difficult to prove that lij, o 7, = (1,1, 1).

Henceforth, without loss of generality, we will assuljtg || = 1. Let 1= d1 > dp >

- > dy >0 denote all the different values ¢f% ()|, 1< j<n, and let{J,};_, be the
partition of J :={1,2, ..., n} defined byJ, = {j € J : [k} (j)| = d,}.

Note that ifis is any best uniform approximation of O froky thenio (j) = hX, ()
forall j € Jy; otherwise (ho + h},)/2 should be a best uniform approximation of 0 from
K that contradicts the definition of the strict uniform approximation. Fopa# 1,

5 < p | < Npllp NS p <nMPIIRE.

So the sef||h, ||}°o 1 is bounded, and ligL, o [, ]| = (125 ]. It follows that the limit as

p — oo ofany convergent subsequence/of} is necessarily a best uniform approximation
of 0 from K. Then observe that, in particular, (2) is valid whenevgris the unique best
uniform approximation of O froniK. In general, sincé..(j) = k%, (j) forall j € J1, we
deduce that

. N .
pl|_r>noo hy(j) =hi(j) forallje Ji.

Also, it is easy to prove that the functign: (1, +o00) — R", given byF(p) = hy, is
continuous.

The next example is especially interesting because it presents a situation/yyltees
not converge to any point gs— oc.

Example 2. Consider the curve§i, C» in R given by

Ci={(x,y,20eR¥:y=14+@x-1?2 0<x<1, z=0},
Co={(x,y,20eR®: y=1+(x—-12% 0<x<1, z=1}.

Foreveryinteget > 2 takeP;, = (1 o2, 1+ o 1)2, )eCl, O = (1— 21+ 2 5 1)
€ C». LetT; be the convex hull of the point’;, Oy, P11 andletl) be the convex hull of the
pointsQx, Pry+1andQy 1. Finally, letk denote the closed convex hulllof, 52 (T U T)).
Observe that the segment:= {(1, 1, ¢) : 0<¢<1}is in K. Moreover, sincé:(2) > 1 for
allh € K, itis easy to prove that the set of the best uniform approximations of OKrésn
preciselyL, and sai}, = (1,1, 0).

If we write i, = (x,, yp, 2p), p > 1, then(x,, y,) — (1,1)asp — oo. As (1,1,0)
K, we have £ + y) + zp<2forall p > 1, and hencé,, # (1,1,1), with 0 < r<1.
Applying (1) we see easily tha, # (1,1,0). Thusforallp > 1we getf +y) +z5 <2
and it is deduced that, < 1,y, > 1Land 0Kz, < 1.

We havex) — 0 andz,, — O asp — oo. Indeed, otherwise we can take a subsequence
pr — oosuch thatxh, ybr, z0¥) — (a, B, 7) ask — oo, witha >0,y >0 andx+ 7y > 0.
Observe thaf > 1 sincey,, > 1forallk. Using a subsequence if necessary, we can suppose
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(Xpes Ypi» 2p) = (1,1, z0) ask — oo, with a fixed g € [0, 1]. Applying (1) we obtain
pe — ROIXETE 4 (3 = R)YPET + (2 — R(3)ZI<0 forallh € K,
and so, taking limits ak — oo,
(1 —h(1) + B —h(2) +y(z0 — h(3))<0 forallh € K. (4)

Note thaty = 0 if 0<zo < 1. Furthermore, itp = 1 andy > 0, we get a contradiction
in (4) forh = (1,1,0). Soy = 0 and (we are assuming)> 0. Now, applying (4) with
h = P € K,we getr— 5= 2/5 7 <0 forevery integek > 2. Hencex <0, a contradiction. Thus

P~ 0asp — oo.In partlcular, we have proved that(l — x,) — 400 asp — oo.

Sincexp 1 1as p— oo, the continuity of the map — x, implies that there exists
pr — oo ask — oo such thatv,, = 1 — 1/k for all k large enough (thug,/k — oo
ask — oo). Recall thatz,, < 1 for everyp,. Furthermore, it is easy to see thgf # 0
whenever,, = 1—1/k. Thus forklarge enouglt,, € int(T;), and sadz,, coincides with
the bestp,-approximation of 0 from the planeg,, determined by the point8;, QO and
P11, and whose equation is given by

8k3x + k2(4k? — 1)y + z = 4k* + 8k3 — 5K2.

Sinceh,,, is the only point of contact of the surfagé + y? + z” = x{ + yb¢ + zhr with
the planeny, for k sufficiently large there existg, # 0 such that

(el bt pehy g (8k3 KR (4k% — 1), 1).

Hence, in particula 7t~ = x21/8k3, and sz, = x,, /(8k3)Y/ =D, Sincepy/k —
oo andx,, — 1, ask — oo, we obtain immediately lim.~ z,, = 1, and hence
iMoo p, = (1,1, 1).

Similarly, there existg; — oo ask — oo such thalxp/ =1-2/(2k—1)forall klarge
enough. For thedeit is immediate to prove that = Pk, andsolim_ o= (1,1,0).
Consequentlyl, does not converge gs — oo. Furthermore, as the map — z, is
continuous forp € (1, co), for eachzg € [0, 1] there exists a subsequene§, — oo such
that limg_ o0 1, = (1,1, 20).

The main purpose of this paper is to give a conditiofkao that (3) holds. The following
example shows that, even in the case that> &}, (3) may not be achieved.

Example 3. In R?, let K be the convex hull of the curv€ = {(x, y)ry =1+ (x—
1)2, 0<x<1}. An easy computation shows thdf, = (1,1) is the unique best uniform

approximation of O fronK and thath, = (1 —-9,,1+ (Sf,), with 6, > Oforall p > 1 and
6, = 0asp — oo. Since

Q=0 + A+ )P <1 +17 =2,

we deduce that lim supt 5%)1’ < oo asp — oo. Furthermore, sincg, is the only point
of contact of the? ,-ball with the curveC, we have

A= 0,)P"H/(L+ 8Pt =25,
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We conclude that lip,oo(1 — 5,)?~* = 0, and s0 lim_,o e~%»P~1 = 0, whence
poé, = coasp — oo.

2. The property A

Forh € K, we define
Vi(K) ={v e R":|v||=1andh + Av € K for somel > 0},

pp(v)y =maxi:0< A<1, h+ iv e K} foreachv € V,(K),
andA;, = Ap(K) = inf{p,(v) : v € Vi(K)}.

Definition 2.1. We say thaK satisfies property, if Ay, > 0 for every best uniform
approximation, of 0 fromK.

If Kis a closed half-space 6" then it is easy to prove that;, > 0 for eachs € K.
Moreover, a standard argument shows that the propérty= O for every elemeni in K”
is preserved under finite intersection of closed, convex sets. In particidas, a polyhedral
set, thend;, > 0 for allhin K, and therefor& satisfies property ...

Theorem 2.2. LetK be a nonemptyjosed convex setdt”, 0 ¢ K. Leth, denote the best
p-approximation of0 from K, 1< p < oo, and leth, be the strict uniform approximation
of 0 from K. If K satisfies propertyd, thenlimsupp ||, — h% || < co asp — oo.

Proof. If the theorem is false, then there exists a sequence oo such thatpy ||k, —

hi || = oo ask — oo. Thus we will prove the theorem by showing that for any sequence
pr 1 oo, liminfi_ oo pillhy, — Rl < 0o. Solet p 4 oo ask — oo. If by, = hj for
infinitely manyk, then the result follows. Hence, using a subsequence if necessary, we can
supposér,, # h} for all k, and moreover lig, o ux = u, with |lu]| = 1, where

th — hgo
Uy = ———.
hpe = hE |l

We assert that there existg € J for whichu(jo) # 0 and
liminf p Ay, (jo) — ha (o)l < oo.
k— 00

This assertion proves the theorem. Indeed,
Pilhp, (o) — hi (o)l

lim inf hy, — k|| = liminf
i 123 Dk soll s 00 lux (o)l
=——— liminf pglhy, (o) — h (jo)| < oo.
uGjo)l koo TP >

Therefore our aim is now to prove that assertion.
In the following claim it is significant that ;= > 0.

Claim. Bothhy, + Aug andhl, + iu are in K for every0<KA< Ay, .
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Indeed, observe that_ + ||h,, —hi |l ur = hy, € K, with ||, —h5 || > 0, |lug|l = 1.
Henceh’, + Aps, ux € K foranyk, and sai’, + A, u € K. As Kis convex, we conclude
thathl, + Aux € K andhy, + Au € K for every 0O<S A< Apx . So the claim is proved.

By the definition of,, we have

i Go)IPE <Y N (D™ < Y IRk (DIP<n - forall jo € J. (5)
jeJ jeJ

We now consider two exhaustive cases:
(@) u(jo)h, (jo) > 0 for somejo € Ji.
hp (o) — h.(jo)

- > 0 and hence (recall that we are assuming
%, (jo)

In this case, for largd,
|h%,Go)l = 1)

. hp, (o) — h5.(jo)
Ihpk(]0)|pk — 1+u

" (1 o) hzo(jo))"k

h3.(jo) h3.(jo)
hp (jo) — h3,(jo) . .
> 1+ p B o (].O)oo = 1+ pilhy, (o) — hi, (o)l
o

By (5) we deduce thatlimint. o pi |y, (jo) —h5 (jo)| < oo. Thus the theorem is proved
in this case.

(b) u(j)hi, (j)<O0foreachj e Ji.

In this case we now show that

u(j)=0 forallj € Ji. (6)

Indeed, the claim asserts tha}, + /u, with 0S A< Aps , isin K; if u(jo)h%, (jo) < O for
somejjo € J1 andu(j)hli (j)<O0 for eachj € Ji, thenh’, + Au, with 2 > 0 and small
enough, is a best uniform approximation of 0 fréhthat contradicts the definition of the
strict uniform approximation. So (6) holds and then we deduceithat= h}, + Aou is a
best uniform approximation of 0 froid for some smalko € (0, Az ]. Thus,A;oc > 0.

Taking f = h, in (1) we obtainh,, — h%,. ¢, ) <0, and so
(uk, @) <0 for all k.
We will prove that
(u, @,,) <0 forksufficiently large. @)
Whenuy = u, (7) holds trivially. Assume now; # u. Defining
v = (ug — u)/llux — ull,
we have
Roo + Zollux — ull ve = hi, + dou + Aollux — ullvi = hi, + douy.

Then from the claimﬁoo + /10||uk: ull vg is in K. Sinceﬁoo is a best uniform approxi-
mation of O fromK, it follows thath. + nvr € K, whereu := Aj_ . Applying (1) with
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f =ﬁoo+;wk,we get

(Pp = hoo — pvg, (ppk)z (hp, — h3g — dou — g, @p,)

= (nhpk —h ) - L) (W, 9,)

llure — ull
u
+ T _AO (I/l, @pk><0~
lluk — ull

Since(uy, ®p ) <O, {llhp, — h% I} is bounded angluy — u|| — 0 ask — oo, if in addition
ks sufficiently large we deduce that

h, —h* | — ——— , >0
<|| pe — Ml ||uk—u||) (ur, p,)
and hence
u
—_— , <0.
<||”k_'4|| °> e Oncd

So (7) holds. Accordingly, in what follows we will suppose tlkas sufficiently large so
that (7) is valid and also sgim (j)) = sgnu(j)) for all j € J for whichu(j) # 0.

Note that due to (6) we hawe= 2. Letrg := min{r € {2, 3, ..., s} : u(j) # 0for somej
€ J.}. Observe that,, > 0. Otherwiserg = s and then for every e J, with u(j) # O,
SgN(hp, (j)) = sgnu(j)). So u(j)sgnhy, (j)) > 0 and hence

(U, @p) =D u(plhp, ()17 tsgnthy, (j) > 0,

JE€Js
which contradicts (7). Then
1 N .
—— @, =D u() | == sgnihy, ()
dr[;k jed dry
. N .
=3 > u() ”d—’| sgn(hy, (j)) <O, ®)
r=ro jel, o
where the inequality is due to (7). Whenew&l) sgn(i,, (j)) < 0 for somej e J. with
hy, (J hy, (J
r >ro, we obtain sgifh,, (j) — hi,(j)) # sgn(hy,(j)), and so hik EJ; = ”2(]) < 1.
J r
Sinced, <d,, if r >ro, we also have >
hp (J) < hpk(j)‘ -1
dy, d,
Then (8) implies
lim inf nl)| oo foreveryj e J., r>ro. 9)
k—o00 o

Ifu(j)hi,(j)<Oforallj € J.,thenu(ji)hk (j1) < Oforsomeji € J,,. Thus, using the
claim, we deduce that for > 0 and small enough, + A u is a best uniform approximation
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of 0 fromK that in addition contradicts the definition of the strict uniform approximation.
hp (jo) — h (jo)

Therefore there existg < J,, such that(jo)hk, (jo) > 0. Then (o) ~ 0.
Jo
Using (9) we get o0
h - pe—1 h Y Bt (i -1
fimint | 222901 g (1+ M) .
k— 00 o k— 00 th(JO)

Finally, applying the same procedure as in case (a), we obtain

liminf py 1Ay, (jo) — hi (o)l < oo. U]
k— 00
From Theoren?.2 the following result is immediately deduced.

Corollary 2.3. LetK be anonempty closechnvex setoR", 0 ¢ K. Leth, denote the best
p-approximation ofd from K, 1< p < oo, and leth, be the strict uniform approximation
of 0 from K. If K satisfies propertyl, thenlim ,_.c 1, = h},.

The following example shows that propery, is not necessary for (3) to hold.
Example 4. Foro > 0 andx < 1/2 we consider the function

fw) =1+ep[-G-07].  f(3)=1

. . 1/a
which is convex for, <x < 3, wherer, := 3 — (ﬁ) .
Let K, be the convex hull of the curve

Co={x. ) eR:iy=fux), n<x<i].

In this exampleh}, = (% 1) is the only best uniform approximation of O froky, and

hy, = (% — 0p, 1~|—5p), whereg, = exp(—d,”) andd, | 0 asp — oc. Using a similar
argument to that in Exampl& we obtain

(3-2)""
2 P —o
A Y

(1_;’_817)1771 =

p—1

(1-3)"

—— = 1/2. Suppose liminf_,« p 9, = 0. Then itis easy to see
L+ep) 7

We have lim

pP—>00
that
pltD/@p) o 1/p

. . —— P H H
lim inf oct/? 57~ D/P P20 — lim inf 1 =0
p— 00 p—>o0 (péj‘))(Hl)/(ocp) ePop)
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acontradiction. Suppose now lim spp?f;:oo. Thenitisimmediate to see that lim sufs”
p—00

p—>00
Soy—1 . .

5;‘“‘1)/” e7P%)">1, a contradiction as well. We conclude that there are constants

M1, M, > 0 such thatMlgp(Sj‘,gMz, and soh, — (% 1) asp — oo at a rate ex-

actly 1/pt/*.

Remark 1. Note that Theoren2.2 remains true if the conditioA,,, > 0 is satisfied by
any best uniform approximatioh,, in an arbitrary small neighborhood a&f_. On the
other hand, Example 1 shows that Theorem 2.2 is not true with the condition- 0 for

~ = h3, only. Observe that in this examplé,: = 1 but 4, , = 0 for each best uniform
approximatione, # h%,.

Remark 2. In Example2 we get the same approximation problenKifis replaced by

the infinite intersection of closed half-spaces determined by the planes which contain the
trianglesTy, T/, k> 2, and the half-space> 0. Thus (2), and hence (3) as well, is not true
generally ifK is the intersection of infinitely many closed half-spaces.
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