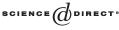


Available online at www.sciencedirect.com



JOURNAL OF Approximation Theory

Journal of Approximation Theory 135 (2005) 105-113

www.elsevier.com/locate/jat

Rate of convergence of the Pólya algorithm from polyhedral sets

R. Huotari^a, M. Marano^{b,*,1}, J. Navas^{b,1}, J.M. Quesada^{b,1}

^aDepartment of Mathematics, Glendale Community College, AZ 85302, USA ^bDepartamento de Matemáticas, Universidad de Jaén, 23071 Jaén, Spain

Received 19 November 2004; received in revised form 25 February 2005; accepted 15 March 2005 Available online 17 May 2005

Abstract

In this paper we consider a problem of best approximation in ℓ_p , $1 . Let <math>h_p$ denote the best *p*-approximation of $h \in \mathbb{R}^n$ from a closed, convex set *K* of \mathbb{R}^n , $1 , <math>h \notin K$, and let h_{∞}^* be the strict uniform approximation of *h* from *K*. We prove that if *K* satisfies locally a geometrical property, fulfilled by any polyhedral set of \mathbb{R}^n , then $\limsup_{p\to\infty} p ||h_p - h_{\infty}^*|| < \infty$. © 2005 Elsevier Inc. All rights reserved.

Keywords: Strict uniform approximation; Best discrete ℓ_p -approximation; Rate of convergence; Pólya algorithm; Polyhedral sets

1. Introduction

For $x = (x(1), x(2), ..., x(n)) \in \mathbb{R}^n$ and $1 \le p \le \infty$, the ℓ_p -norms are defined by

$$\|x\|_{p} = \left(\sum_{j=1}^{n} |x(j)|^{p}\right)^{1/p}, \quad 1 \le p < \infty,$$
$$\|x\| := \|x\|_{\infty} = \max_{1 \le j \le n} |x(j)|, \qquad p = \infty.$$

* Corresponding author. Fax: +34 953211871

 $0021\mathchar`-9045/\mathcha$

E-mail addresses: robert.huotari@gcmail.maricopa.edu (R. Huotari), mmarano@ujaen.es (M. Marano), jnavas@ujaen.es (J. Navas), jquesada@ujaen.es (J.M. Quesada).

¹ Partially supported by Junta de Andalucía, Research Group FQM268.

Let $K \neq \emptyset$ be a subset of \mathbb{R}^n . For a fixed $h \in \mathbb{R}^n \setminus K$ and $1 \leq p \leq \infty$ we say that $h_p \in K$ is a best *p*-approximation of *h* from *K* if

$$||h_p - h||_p \leq ||f - h||_p \quad \text{for all } f \in K.$$

Throughout this paper we will assume that *K* is a closed, convex set of \mathbb{R}^n . We also suppose $0 \notin K$ and h = 0. This involves no loss of generality since all relevant properties are translation invariant. In this context, the existence of h_p is a well-known result. Moreover, for $1 , <math>h_p$ is unique and characterized by (see for instance [12])

$$\sum_{j=1}^{n} (h_p(j) - f(j)) |h_p(j)|^{p-1} \operatorname{sgn}(h_p(j)) \leq 0 \text{ for all } f \in K.$$

This condition can be written

$$\langle h_p - f, \varphi_p \rangle \leqslant 0 \quad \text{for all } f \in K,$$
 (1)

where $\langle \cdot, \cdot \rangle$ denotes the usual inner product in \mathbb{R}^n and $\varphi_p \in \mathbb{R}^n$ is given by $\varphi_p(j) := |h_p(j)|^{p-1} \operatorname{sgn}(h_p(j)), 1 \leq j \leq n.$

If $p = \infty$ we will also say that h_{∞} is a best uniform approximation of 0 from K. A best uniform approximation may not be unique.

It is also known [1,4,6] that if *K* is an affine subspace, then

$$\lim_{p \to \infty} h_p = h_{\infty}^*,\tag{2}$$

where h_{∞}^* is a particular best uniform approximation of 0 from *K*, called the *strict* uniform approximation [6,10] and whose definition is also valid in any closed, convex set *K*. The strict uniform approximation is determined by the next property. Let *H* denote the set of the best uniform approximations of 0 from *K*. For every $h_{\infty} \in H$ we consider the vector $\tau(h_{\infty})$ whose coordinates are given by $|h_{\infty}(j)|$, $1 \leq j \leq n$, arranged in decreasing order. Then h_{∞}^* is the only element in *H* which has $\tau(h_{\infty}^*)$ minimal in the lexicographic ordering.

In the literature the convergence (2) is called the *Pólya Algorithm* [9]. In [3,8] it is proved that if *K* is an affine subspace then a stronger result holds, namely that

$$\limsup_{p \to \infty} p \|h_p - h_\infty^*\| < \infty.$$
(3)

Moreover, in [8,10] it is deduced that there are constants $M_1, M_2 > 0$ and $0 \le a \le 1$, depending on K, such that

$$M_1 a^p \leq p \|h_p - h_\infty^*\| \leq M_2 a^p$$
 for all $p > 1$.

The next example (see [2,6]) shows that if K is not an affine subspace, then h_p does not converge necessarily to the strict uniform approximation. On the other hand, in [4,6,7] we can find a sufficient condition on K under which (2) holds. In particular, if K is a polyhedral set, i.e., a finite intersection of closed half-spaces, then K satisfies this condition. Furthermore, in this case it is proved in [5] that (3) holds.

106

Example 1. Let $K \subset \mathbb{R}^3$ be the convex hull of

$$\{(x, y, z) : y = 1 + (x - 1)^2, \quad 0 \le x \le 1, \ z = 1\} \cup \{0, 0, 0\}.$$

In this case, $h_{\infty}^* = (1, 1, 0)$ and it is not difficult to prove that $\lim_{p \to \infty} h_p = (1, 1, 1)$.

Henceforth, without loss of generality, we will assume $||h_{\infty}^*|| = 1$. Let $1 = d_1 > d_2 > \cdots > d_s \ge 0$ denote all the different values of $|h_{\infty}^*(j)|$, $1 \le j \le n$, and let $\{J_r\}_{r=1}^s$ be the partition of $J := \{1, 2, \dots, n\}$ defined by $J_r = \{j \in J : |h_{\infty}^*(j)| = d_r\}$.

Note that if h_{∞} is any best uniform approximation of 0 from *K*, then $h_{\infty}(j) = h_{\infty}^*(j)$ for all $j \in J_1$; otherwise, $(h_{\infty} + h_{\infty}^*)/2$ should be a best uniform approximation of 0 from *K* that contradicts the definition of the strict uniform approximation. For all p > 1,

$$||h_{\infty}^{*}|| \leq ||h_{p}|| \leq ||h_{p}||_{p} \leq ||h_{\infty}^{*}||_{p} \leq n^{1/p} ||h_{\infty}^{*}||.$$

So the set $\{\|h_p\|\}_{p=1}^{\infty}$ is bounded, and $\lim_{p\to\infty} \|h_p\| = \|h_{\infty}^{*}\|$. It follows that the limit as $p \to \infty$ of any convergent subsequence of $\{h_p\}$ is necessarily a best uniform approximation of 0 from *K*. Then observe that, in particular, (2) is valid whenever h_{∞}^{*} is the unique best uniform approximation of 0 from *K*. In general, since $h_{\infty}(j) = h_{\infty}^{*}(j)$ for all $j \in J_1$, we deduce that

$$\lim_{p \to \infty} h_p(j) = h_{\infty}^*(j) \quad \text{for all } j \in J_1.$$

Also, it is easy to prove that the function $F : (1, +\infty) \to \mathbb{R}^n$, given by $F(p) = h_p$, is continuous.

The next example is especially interesting because it presents a situation where h_p does not converge to any point as $p \to \infty$.

Example 2. Consider the curves C_1 , C_2 in \mathbb{R}^3 given by

$$C_1 = \{ (x, y, z) \in \mathbb{R}^3 : y = 1 + (x - 1)^2, \quad 0 \le x \le 1, \ z = 0 \},\$$

$$C_2 = \{ (x, y, z) \in \mathbb{R}^3 : y = 1 + (x - 1)^2, \quad 0 \le x \le 1, \ z = 1 \}.$$

For every integer $k \ge 2$ take $P_k = \left(1 - \frac{2}{2k-1}, 1 + \frac{4}{(2k-1)^2}, 0\right) \in C_1$, $Q_k = \left(1 - \frac{1}{k}, 1 + \frac{1}{k^2}, 1\right) \in C_2$. Let T_k be the convex hull of the points P_k , Q_k , P_{k+1} and let T'_k be the convex hull of the points Q_k , P_{k+1} and Q_{k+1} . Finally, let K denote the closed convex hull of $\bigcup_{k\ge 2} (T_k \cup T'_k)$. Observe that the segment $L := \{(1, 1, t) : 0 \le t \le 1\}$ is in K. Moreover, since $h(2) \ge 1$ for all $h \in K$, it is easy to prove that the set of the best uniform approximations of 0 from K is precisely L, and so $h^*_{\infty} = (1, 1, 0)$.

If we write $h_p = (x_p, y_p, z_p)$, p > 1, then $(x_p, y_p) \rightarrow (1, 1)$ as $p \rightarrow \infty$. As $(1, 1, 0) \in K$, we have $x_p^p + y_p^p + z_p^p \leq 2$ for all p > 1, and hence $h_p \neq (1, 1, t)$, with $0 < t \leq 1$. Applying (1) we see easily that $h_p \neq (1, 1, 0)$. Thus for all p > 1 we get $x_p^p + y_p^p + z_p^p < 2$ and it is deduced that $x_p < 1$, $y_p > 1$ and $0 \leq z_p < 1$.

We have $x_p^p \to 0$ and $z_p^p \to 0$ as $p \to \infty$. Indeed, otherwise we can take a subsequence $p_k \to \infty$ such that $(x_{p_k}^{p_k}, y_{p_k}^{p_k}, z_{p_k}^{p_k}) \to (\alpha, \beta, \gamma)$ as $k \to \infty$, with $\alpha \ge 0, \gamma \ge 0$ and $\alpha + \gamma > 0$. Observe that $\beta \ge 1$ since $y_{p_k} > 1$ for all k. Using a subsequence if necessary, we can suppose

 $(x_{p_k}, y_{p_k}, z_{p_k}) \rightarrow (1, 1, z_0)$ as $k \rightarrow \infty$, with a fixed $z_0 \in [0, 1]$. Applying (1) we obtain

$$(x_{p_k} - h(1))x_{p_k}^{p_k - 1} + (y_{p_k} - h(2))y_{p_k}^{p_k - 1} + (z_{p_k} - h(3))z_{p_k}^{p_k - 1} \leq 0 \quad \text{for all } h \in K,$$

and so, taking limits as $k \to \infty$,

$$\alpha(1 - h(1)) + \beta(1 - h(2)) + \gamma(z_0 - h(3)) \leqslant 0 \quad \text{for all } h \in K.$$
(4)

Note that $\gamma = 0$ if $0 \le z_0 < 1$. Furthermore, if $z_0 = 1$ and $\gamma > 0$, we get a contradiction in (4) for h = (1, 1, 0). So $\gamma = 0$ and (we are assuming) $\alpha > 0$. Now, applying (4) with $h = P_k \in K$, we get $\alpha - \frac{2\beta}{2k-1} \le 0$ for every integer $k \ge 2$. Hence $\alpha \le 0$, a contradiction. Thus $x_p^p \to 0$ as $p \to \infty$. In particular, we have proved that $p(1 - x_p) \to +\infty$ as $p \to \infty$.

Since $x_p \uparrow 1$ as $p \to \infty$, the continuity of the map $p \mapsto x_p$ implies that there exists $p_k \to \infty$ as $k \to \infty$ such that $x_{p_k} = 1 - 1/k$ for all k large enough (thus $p_k/k \to \infty$ as $k \to \infty$). Recall that $z_{p_k} < 1$ for every p_k . Furthermore, it is easy to see that $z_{p_k} \neq 0$ whenever $x_{p_k} = 1 - 1/k$. Thus for k large enough $h_{p_k} \in int(T_k)$, and so h_{p_k} coincides with the best p_k -approximation of 0 from the plane π_k , determined by the points P_k , Q_k and P_{k+1} , and whose equation is given by

$$8k^3x + k^2(4k^2 - 1)y + z = 4k^4 + 8k^3 - 5k^2.$$

Since h_{p_k} is the only point of contact of the surface $x^p + y^p + z^p = x_{p_k}^{p_k} + y_{p_k}^{p_k} + z_{p_k}^{p_k}$ with the plane π_k , for k sufficiently large there exists $\lambda_k \neq 0$ such that

$$(x_{p_k}^{p_k-1}, y_{p_k}^{p_k-1}, z_{p_k}^{p_k-1}) = \lambda_k(8k^3, k^2(4k^2 - 1), 1).$$

Hence, in particular, $z_{p_k}^{p_k-1} = x_{p_k}^{p_k-1}/8k^3$, and so $z_{p_k} = x_{p_k}/(8k^3)^{1/(p_k-1)}$. Since $p_k/k \to \infty$ and $x_{p_k} \to 1$, as $k \to \infty$, we obtain immediately $\lim_{k\to\infty} z_{p_k} = 1$, and hence $\lim_{k\to\infty} h_{p_k} = (1, 1, 1)$.

Similarly, there exists $p'_k \to \infty$ as $k \to \infty$ such that $x_{p'_k} = 1 - 2/(2k - 1)$ for all *k* large enough. For these *k* it is immediate to prove that $h_{p'_k} = P_k$, and so $\lim_{k\to\infty} h_{p'_k} = (1, 1, 0)$. Consequently, h_p does not converge as $p \to \infty$. Furthermore, as the map $p \mapsto z_p$ is continuous for $p \in (1, \infty)$, for each $z_0 \in [0, 1]$ there exists a subsequence $p''_k \to \infty$ such that $\lim_{k\to\infty} h_{p'_k} = (1, 1, z_0)$.

The main purpose of this paper is to give a condition on K so that (3) holds. The following example shows that, even in the case that $h_p \rightarrow h_{\infty}^*$, (3) may not be achieved.

Example 3. In \mathbb{R}^2 , let *K* be the convex hull of the curve $C = \{(x, y) : y = 1 + (x - 1)^2, 0 \le x \le 1\}$. An easy computation shows that $h_{\infty}^* = (1, 1)$ is the unique best uniform approximation of 0 from *K* and that $h_p = (1 - \delta_p, 1 + \delta_p^2)$, with $\delta_p > 0$ for all p > 1 and $\delta_p \to 0$ as $p \to \infty$. Since

$$(1 - \delta_p)^p + (1 + \delta_p^2)^p < 1^p + 1^p = 2,$$

we deduce that $\limsup_{p \to \infty} (1 + \delta_p^2)^p < \infty$ as $p \to \infty$. Furthermore, since h_p is the only point of contact of the ℓ_p -ball with the curve *C*, we have

$$(1 - \delta_p)^{p-1} / (1 + \delta_p^2)^{p-1} = 2\delta_p.$$

108

We conclude that $\lim_{p\to\infty} (1-\delta_p)^{p-1} = 0$, and so $\lim_{p\to\infty} e^{-\delta_p(p-1)} = 0$, whence $p \,\delta_p \to \infty$ as $p \to \infty$.

2. The property A_{∞}

For
$$h \in K$$
, we define
 $V_h(K) = \{v \in \mathbb{R}^n : ||v|| = 1 \text{ and } h + \lambda v \in K \text{ for some } \lambda > 0\},$
 $\rho_h(v) = \max\{\lambda : 0 < \lambda \leq 1, h + \lambda v \in K\} \text{ for each } v \in V_h(K),$
and $A_h = A_h(K) = \inf\{\rho_h(v) : v \in V_h(K)\}.$

Definition 2.1. We say that *K* satisfies property A_{∞} if $A_{h_{\infty}} > 0$ for every best uniform approximation h_{∞} of 0 from *K*.

If *K* is a closed half-space of \mathbb{R}^n then it is easy to prove that $A_h > 0$ for each $h \in K$. Moreover, a standard argument shows that the property " $A_h > 0$ for every element *h* in *K*" is preserved under finite intersection of closed, convex sets. In particular, if *K* is a polyhedral set, then $A_h > 0$ for all *h* in *K*, and therefore *K* satisfies property A_∞ .

Theorem 2.2. Let K be a nonempty, closed convex set of \mathbb{R}^n , $0 \notin K$. Let h_p denote the best p-approximation of 0 from K, $1 , and let <math>h_{\infty}^*$ be the strict uniform approximation of 0 from K. If K satisfies property A_{∞} then $\limsup p \|h_p - h_{\infty}^*\| < \infty$ as $p \to \infty$.

Proof. If the theorem is false, then there exists a sequence $p_k \uparrow \infty$ such that $p_k ||h_{p_k} - h_{\infty}^*|| \to \infty$ as $k \to \infty$. Thus we will prove the theorem by showing that for any sequence $p_k \uparrow \infty$, $\lim \inf_{k\to\infty} p_k ||h_{p_k} - h_{\infty}^*|| < \infty$. So let $p_k \uparrow \infty$ as $k \to \infty$. If $h_{p_k} = h_{\infty}^*$ for infinitely many k, then the result follows. Hence, using a subsequence if necessary, we can suppose $h_{p_k} \neq h_{\infty}^*$ for all k, and moreover $\lim_{k\to\infty} u_k = u$, with ||u|| = 1, where

$$u_k := \frac{h_{p_k} - h_{\infty}^*}{\|h_{p_k} - h_{\infty}^*\|}$$

We assert that there exists $j_0 \in J$ for which $u(j_0) \neq 0$ and

$$\liminf_{k \to \infty} p_k |h_{p_k}(j_0) - h_{\infty}^*(j_0)| < \infty.$$

This assertion proves the theorem. Indeed,

$$\begin{split} \liminf_{k \to \infty} p_k \|h_{p_k} - h_{\infty}^*\| &= \liminf_{k \to \infty} \frac{p_k |h_{p_k}(j_0) - h_{\infty}^*(j_0)|}{|u_k(j_0)|} \\ &= \frac{1}{|u(j_0)|} \liminf_{k \to \infty} p_k |h_{p_k}(j_0) - h_{\infty}^*(j_0)| < \infty. \end{split}$$

Therefore our aim is now to prove that assertion.

In the following claim it is significant that $A_{h_{\infty}^*} > 0$.

Claim. Both $h_{\infty}^* + \lambda u_k$ and $h_{\infty}^* + \lambda u$ are in K for every $0 \leq \lambda \leq A_{h_{\infty}^*}$.

Indeed, observe that $h_{\infty}^* + \|h_{p_k} - h_{\infty}^*\| u_k = h_{p_k} \in K$, with $\|h_{p_k} - h_{\infty}^*\| > 0$, $\|u_k\| = 1$. Hence, $h_{\infty}^* + A_{h_{\infty}^*} u_k \in K$ for any k, and so $h_{\infty}^* + A_{h_{\infty}^*} u \in K$. As K is convex, we conclude that $h_{\infty}^* + \lambda u_k \in K$ and $h_{\infty}^* + \lambda u \in K$ for every $0 \leq \lambda \leq A_{h_{\infty}^*}$. So the claim is proved.

By the definition of h_{p_k} we have

$$|h_{p_k}(j_0)|^{p_k} \leqslant \sum_{j \in J} |h_{p_k}(j)|^{p_k} < \sum_{j \in J} |h_{\infty}^*(j)|^{p_k} \leqslant n \quad \text{for all } j_0 \in J.$$
(5)

We now consider two exhaustive cases:

(a) $u(j_0)h_{\infty}^*(j_0) > 0$ for some $j_0 \in J_1$. In this case, for large k, $\frac{h_{p_k}(j_0) - h_{\infty}^*(j_0)}{h_{\infty}^*(j_0)} > 0$ and hence (recall that we are assuming $|h_{\infty}^{*}(j_{0})| = 1$

$$\begin{aligned} |h_{p_k}(j_0)|^{p_k} &= \left| 1 + \frac{h_{p_k}(j_0) - h_{\infty}^*(j_0)}{h_{\infty}^*(j_0)} \right|^{p_k} = \left(1 + \frac{h_{p_k}(j_0) - h_{\infty}^*(j_0)}{h_{\infty}^*(j_0)} \right)^{p_k} \\ &\geqslant 1 + p_k \frac{h_{p_k}(j_0) - h_{\infty}^*(j_0)}{h_{\infty}^*(j_0)} = 1 + p_k |h_{p_k}(j_0) - h_{\infty}^*(j_0)|. \end{aligned}$$

By (5) we deduce that $\liminf_{k\to\infty} p_k |h_{p_k}(j_0) - h^*_{\infty}(j_0)| < \infty$. Thus the theorem is proved in this case.

 $u(j)h_{\infty}^{*}(j) \leq 0$ for each $j \in J_1$. (b) In this case we now show that

$$u(j) = 0 \quad \text{for all } j \in J_1. \tag{6}$$

Indeed, the claim asserts that $h_{\infty}^* + \lambda u$, with $0 \leq \lambda \leq A_{h_{\infty}^*}$, is in K; if $u(j_0)h_{\infty}^*(j_0) < 0$ for some $j_0 \in J_1$ and $u(j)h_{\infty}^*(j) \leq 0$ for each $j \in J_1$, then $h_{\infty}^* + \lambda u$, with $\lambda > 0$ and small enough, is a best uniform approximation of 0 from K that contradicts the definition of the strict uniform approximation. So (6) holds and then we deduce that $\hat{h}_{\infty} := h_{\infty}^* + \lambda_0 u$ is a best uniform approximation of 0 from K for some small $\lambda_0 \in (0, A_{h_{\infty}^*}]$. Thus, $A_{\hat{h}_{\infty}} > 0$.

Taking $f = h_{\infty}^*$ in (1) we obtain $\langle h_{p_k} - h_{\infty}^*, \varphi_{p_k} \rangle \leq 0$, and so

 $\langle u_k, \varphi_{p_k} \rangle \leq 0$ for all k.

We will prove that

$$\langle u, \varphi_{p_k} \rangle \leqslant 0$$
 for *k* sufficiently large. (7)

When $u_k = u$, (7) holds trivially. Assume now $u_k \neq u$. Defining

$$w_k = (u_k - u) / ||u_k - u||,$$

we have

$$\widehat{h}_{\infty} + \lambda_0 \|u_k - u\| v_k = h_{\infty}^* + \lambda_0 u + \lambda_0 \|u_k - u\| v_k = h_{\infty}^* + \lambda_0 u_k.$$

Then from the claim, $\hat{h}_{\infty} + \lambda_0 ||u_k - u|| v_k$ is in K. Since \hat{h}_{∞} is a best uniform approximation of 0 from K, it follows that $\hat{h}_{\infty} + \mu v_k \in K$, where $\mu := A_{\hat{h}_{\infty}}$. Applying (1) with

110

$$f = \widehat{h}_{\infty} + \mu v_k, \text{ we get}$$

$$\langle h_{p_k} - \widehat{h}_{\infty} - \mu v_k, \varphi_{p_k} \rangle = \langle h_{p_k} - h_{\infty}^* - \lambda_0 u - \mu v_k, \varphi_{p_k} \rangle$$

$$= \left(\|h_{p_k} - h_{\infty}^*\| - \frac{\mu}{\|u_k - u\|} \right) \langle u_k, \varphi_{p_k} \rangle$$

$$+ \left(\frac{\mu}{\|u_k - u\|} - \lambda_0 \right) \langle u, \varphi_{p_k} \rangle \leqslant 0.$$

Since $\langle u_k, \varphi_{p_k} \rangle \leq 0$, { $||h_{p_k} - h_{\infty}^*||$ } is bounded and $||u_k - u|| \to 0$ as $k \to \infty$, if in addition k is sufficiently large we deduce that

$$\left(\|h_{p_k}-h_{\infty}^*\|-\frac{\mu}{\|u_k-u\|}\right)\langle u_k,\varphi_{p_k}\rangle \ge 0$$

and hence

$$\left(\frac{\mu}{\|u_k-u\|}-\lambda_0\right)\langle u,\,\varphi_{p_k}\rangle \leq 0.$$

So (7) holds. Accordingly, in what follows we will suppose that k is sufficiently large so that (7) is valid and also $sgn(u_k(j)) = sgn(u(j))$ for all $j \in J$ for which $u(j) \neq 0$.

Note that due to (6) we have $s \ge 2$. Let $r_0 := \min\{r \in \{2, 3, ..., s\} : u(j) \ne 0$ for some $j \in J_r\}$. Observe that $d_{r_0} > 0$. Otherwise, $r_0 = s$ and then for every $j \in J_s$ with $u(j) \ne 0$, $\operatorname{sgn}(h_{p_k}(j)) = \operatorname{sgn}(u(j))$. So $u(j) \operatorname{sgn}(h_{p_k}(j)) > 0$ and hence

$$\langle u, \varphi_{p_k} \rangle = \sum_{j \in J_s} u(j) |h_{p_k}(j)|^{p_k - 1} \operatorname{sgn}(h_{p_k}(j)) > 0,$$

which contradicts (7). Then

$$\frac{1}{d_{r_0}^{p_k-1}} \langle u, \varphi_{p_k} \rangle = \sum_{j \in J} u(j) \left| \frac{h_{p_k}(j)}{d_{r_0}} \right|^{p_k-1} \operatorname{sgn}(h_{p_k}(j))$$
$$= \sum_{r=r_0}^s \sum_{j \in J_r} u(j) \left| \frac{h_{p_k}(j)}{d_{r_0}} \right|^{p_k-1} \operatorname{sgn}(h_{p_k}(j)) \leqslant 0, \tag{8}$$

where the inequality is due to (7). Whenever $u(j) \operatorname{sgn}(h_{p_k}(j)) < 0$ for some $j \in J_r$ with $r \ge r_0$, we obtain $\operatorname{sgn}(h_{p_k}(j) - h_{\infty}^*(j)) \ne \operatorname{sgn}(h_{p_k}(j))$, and so $\left|\frac{h_{p_k}(j)}{h_{\infty}^*(j)}\right| = \left|\frac{h_{p_k}(j)}{d_r}\right| < 1$. Since $d_r \le d_{r_0}$ if $r \ge r_0$, we also have

$$\left|\frac{h_{p_k}(j)}{d_{r_0}}\right| \leqslant \left|\frac{h_{p_k}(j)}{d_r}\right| < 1.$$

Then (8) implies

$$\liminf_{k \to \infty} \left| \frac{h_{p_k}(j)}{d_{r_0}} \right| < \infty \quad \text{for every } j \in J_r, \ r \ge r_0.$$
(9)

If $u(j)h_{\infty}^{*}(j) \leq 0$ for all $j \in J_{r_0}$, then $u(j_1)h_{\infty}^{*}(j_1) < 0$ for some $j_1 \in J_{r_0}$. Thus, using the claim, we deduce that for $\lambda > 0$ and small enough $h_{\infty}^{*} + \lambda u$ is a best uniform approximation

of 0 from *K* that in addition contradicts the definition of the strict uniform approximation. Therefore there exists $j_0 \in J_{r_0}$ such that $u(j_0)h_{\infty}^*(j_0) > 0$. Then $\frac{h_{p_k}(j_0) - h_{\infty}^*(j_0)}{h_{\infty}^*(j_0)} > 0$. Using (9) we get

$$\liminf_{k \to \infty} \left| \frac{h_{p_k}(j_0)}{d_{r_0}} \right|^{p_k - 1} = \liminf_{k \to \infty} \left(1 + \frac{h_{p_k}(j_0) - h_{\infty}^*(j_0)}{h_{\infty}^*(j_0)} \right)^{p_k - 1} < \infty.$$

Finally, applying the same procedure as in case (a), we obtain

$$\liminf_{k \to \infty} p_k |h_{p_k}(j_0) - h_{\infty}^*(j_0)| < \infty. \qquad \Box$$

From Theorem 2.2 the following result is immediately deduced.

Corollary 2.3. Let K be a nonempty closed, convex set of \mathbb{R}^n , $0 \notin K$. Let h_p denote the best p-approximation of 0 from K, $1 , and let <math>h_{\infty}^*$ be the strict uniform approximation of 0 from K. If K satisfies property A_{∞} then $\lim_{p\to\infty} h_p = h_{\infty}^*$.

The following example shows that property A_{∞} is not necessary for (3) to hold.

Example 4. For $\alpha > 0$ and $x \leq 1/2$ we consider the function

$$f_{\alpha}(x) = 1 + \exp\left[-(\frac{1}{2} - x)^{-\alpha}\right], \qquad f_{\alpha}\left(\frac{1}{2}\right) = 1,$$

which is convex for $t_{\alpha} \leq x \leq \frac{1}{2}$, where $t_{\alpha} := \frac{1}{2} - \left(\frac{\alpha}{\alpha+1}\right)^{1/\alpha}$.

Let K_{α} be the convex hull of the curve

$$C_{\alpha} = \left\{ (x, y) \in \mathbb{R}^2 : y = f_{\alpha}(x), \quad t_{\alpha} \leq x \leq \frac{1}{2} \right\}.$$

In this example, $h_{\infty}^* = \left(\frac{1}{2}, 1\right)$ is the only best uniform approximation of 0 from K_{α} and $h_p = \left(\frac{1}{2} - \delta_p, 1 + \varepsilon_p\right)$, where $\varepsilon_p = \exp(-\delta_p^{-\alpha})$ and $\delta_p \downarrow 0$ as $p \to \infty$. Using a similar argument to that in Example 3, we obtain

$$\frac{\left(\frac{1}{2} - \delta_p\right)^{p-1}}{(1 + \varepsilon_p)^{p-1}} = \alpha \, \delta_p^{-\alpha - 1} e^{-\delta_p^{-\alpha}}.$$

We have $\lim_{p \to \infty} \frac{\left(\frac{1}{2} - \delta_p\right)^{\frac{p-1}{p}}}{\left(1 + \varepsilon_p\right)^{\frac{p-1}{p}}} = 1/2$. Suppose $\liminf_{p \to \infty} p \, \delta_p^{\alpha} = 0$. Then it is easy to see that

that

$$\liminf_{p \to \infty} \alpha^{1/p} \, \delta_p^{(-\alpha-1)/p} \, e^{(-p \, \delta_p^{\alpha})^{-1}} = \liminf_{p \to \infty} \, \frac{p^{(\alpha+1)/(\alpha p)} \, \alpha^{1/p}}{(p \, \delta_p^{\alpha})^{(\alpha+1)/(\alpha p)} \, e^{(p \, \delta_p^{\alpha})^{-1}}} = 0,$$

113

a contradiction. Suppose now $\limsup_{p \to \infty} p \, \delta_p^{\alpha} = \infty$. Then it is immediate to see that $\limsup_{p \to \infty} \alpha^{1/p} \delta_p^{(-\alpha-1)/p} e^{(-p \, \delta_p^{\alpha})^{-1}} \ge 1$, a contradiction as well. We conclude that there are constants $M_1, M_2 > 0$ such that $M_1 \le p \, \delta_p^{\alpha} \le M_2$, and so $h_p \to (\frac{1}{2}, 1)$ as $p \to \infty$ at a rate exactly $1/p^{1/\alpha}$.

Remark 1. Note that Theorem 2.2 remains true if the condition $A_{h_{\infty}} > 0$ is satisfied by any best uniform approximation h_{∞} in an arbitrary small neighborhood of h_{∞}^* . On the other hand, Example 1 shows that Theorem 2.2 is not true with the condition $A_{h_{\infty}} > 0$ for $h_{\infty} = h_{\infty}^*$ only. Observe that in this example, $A_{h_{\infty}^*} = 1$ but $A_{h_{\infty}} = 0$ for each best uniform approximation $h_{\infty} \neq h_{\infty}^*$.

Remark 2. In Example 2 we get the same approximation problem if *K* is replaced by the infinite intersection of closed half-spaces determined by the planes which contain the triangles T_k , T'_k , $k \ge 2$, and the half-space $z \ge 0$. Thus (2), and hence (3) as well, is not true generally if *K* is the intersection of infinitely many closed half-spaces.

References

- J. Descloux, Approximations in L^p and Chebychev approximations, J. Soc. Ind. Appl. Math. 11 (1963) 1017–1026.
- [2] A. Egger, R. Huotari, The Pólya algorithm on convex sets, J. Approx. Theory 56 (1989) 212-216.
- [3] A. Egger, R. Huotari, Rate of convergence of the discrete Pólya algorithm, J. Approx. Theory 60 (1990) 24–30.
- [4] R. Huotari, D. Legg, D. Townsend, The Pólya algorithm on cylindrical sets, J. Approx. Theory 53 (1988) 335–349.
- [5] Junning Shi, Convex sets in approximation theory, Doctoral Thesis, Idaho State University, 1994.
- [6] M. Marano, Strict approximation on closed convex sets, Approx. Theory Appl. 6 (1990) 99-109.
- [7] M. Marano, R. Huotari, The Pólya algorithm on tubular sets, J. Comput. Appl. Math. 54 (1994) 151-157.
- [8] M. Marano, J. Navas, The linear discrete Pólya algorithm, Appl. Math. Lett. 8 (6) (1995) 25-28.
- [9] G. Pólya, Sur un algorithme toujours convergent pour obtenir les polynomes de meilleure approximation de Tchebycheff pour une function continue quelconque, C. R. Acad. Sci. Paris 157 (1913) 840–843.
- [10] J.M. Quesada, J. Navas, Rate of convergence of the linear discrete pólya algorithm, J. Approx. Theory 110 (2001) 109–119.
- [11] J.R. Rice, Tchebycheff approximation in a compact metric space, Bull. Amer. Math. Soc. 68 (1962) 405–410.
- [12] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer, Berlin, 1970.